Driving CO2 emissions to zero (and beyond) with carbon capture, use, and storage

Any pathway to mitigate climate change requires the rapid reduction of CO2 emissions and negative-emissions technologies to cut atmospheric concentrations. Technology and regulation will be the key.

Growing concerns about climate change are intensifying interest in advanced technologies to reduce emissions in hard-to-abate sectors, such as cement, and also to draw down CO2 levels in the atmosphere. High on the list is carbon capture, use, and storage (CCUS), the term for a family of technologies and techniques that do exactly what they say: they capture CO2 and use or store it to prevent its release into the atmosphere. Through direct air capture (DAC) or bioenergy with carbon capture and storage (BECCS), CCUS can actually draw down CO2 concentrations in the atmosphere—“negative emissions,” as this is called. In some cases, that CO2 can be used to create products ranging from cement to synthetic fuels.

To better understand the possible role of CCUS, we looked at current technologies, reviewed current developments that could accelerate CCUS adoption, and assessed the economics of a range of use and storage scenarios. The short- to medium-term technical potential for CCUS is significant (Exhibit 1). CCUS doesn’t diminish the need to continue reducing CO2 emissions in other ways—for instance, by using more renewable energy, such as wind and solar power. But it offers considerable potential for reducing emissions in particularly hard-to-abate sectors, such as cement and steel production. What’s more, CCUS, along with natural carbon capture achieved through reforestation, would be a necessary step on the pathway to limiting warming to 1.5 degrees Celsius above preindustrial levels.

Συνέχεια ανάγνωσης εδώ

Πηγή: mckinsey

Σχετικά Άρθρα