
Microchip breakthrough may reshape the future of AI
IBM’s new NorthPole may enable smarter, more efficient, network-independent devices that may even help the U.S. win the microchip war against China.
A prototype microchip design revealed today by IBM could pave the way for a world of much smarter devices that don’t rely on the cloud or the internet for their intelligence. That could help soldiers who operate drones, ground robots, or augmented-reality gear against adversaries who can target electronic emissions. But the new chip—modeled loosely on the human brain—also paves the way for a different sort of AI, one that doesn’t rely on big cloud and data companies like Amazon or Google.
Unlike traditional chips that separate memory from processing circuits, the NorthPole chip combines the two—like synapses in the brain that hold and process information based on their connection to other neurons. Writing in the journal Science, IBM researchers call it a “neural inference architecture that blurs this boundary by eliminating off-chip memory, intertwining compute with memory on-chip, and appearing externally as an active memory.”
Why is that important and what does it have to do with the future? Today’s computers have at least two characteristics that limit AI development.
First, they need a lot of power. Your brain, running on just 12 watts of power, can retain and retrieve the information you need have a detailed conversation while simultaneously absorbing, correctly interpreting, and making decisions about the enormous amount of sensory data required to drive a car. But a desktop computer requires 175 watts just to process the ones and zeros of an orderly spreadsheet. This is one reason why computer vision in cars and drones is so difficult, a huge limiting factor for autonomy. This energy inefficiency is one reason why many of today’s AI tools depend on enormous enterprise cloud farms that consume enough energy to power a small town.
The second problem is that we’re reaching the atomic limit of how many transistors we can fit on a chip.
Συνέχεια εδώ